A new robotic drive joint friction compensation mechanism using neural networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Adaptive friction compensation using neural network approximations
We present a new compensation technique for a friction model, which captures problematic friction effects such as Stribeck effects, hysteresis, stick-slip limit cycling, pre-sliding displacement and rising static friction. The proposed control utilizes a PD control structure and an adaptive estimate of the friction force. Specifically, a radial basis function (RBF) is used to compensate the eff...
متن کاملModeling Contact Friction and Joint Friction in Dynamic Robotic Simulation Using the Principle of Maximum Dissipation
We present a unified treatment for modeling Coulomb and viscous friction within multi-rigid body simulation using the principle of maximum dissipation. This principle is used to build two different methods—an event-driven impulse-based method and a time stepping method—for modeling contact. The same principle is used to effect joint friction in articulated mechanisms. Experiments show that the ...
متن کاملCompensation of Friction in Robotic Arms and Slide Tables
The paper presents experimental results of friction parameter identification for two different systems: rotational arms of a direct-drive spherical manipulator and linear slide tables. Parameters of the static part of the LuGre friction model are estimated. Several experiments are reported in which selected friction compensation methods are employed for tracking at low velocities. Two compensat...
متن کاملImage Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution
In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Brazilian Society of Mechanical Sciences and Engineering
سال: 2003
ISSN: 1678-5878
DOI: 10.1590/s1678-58782003000200004